

Gravel Road Maintenance Basics

John Maclaine Nonpoint Source Training Center

Watershed

Maine's Natural Resources

~6,000 Lakes & Ponds

>45,000 Miles of Rivers & Streams

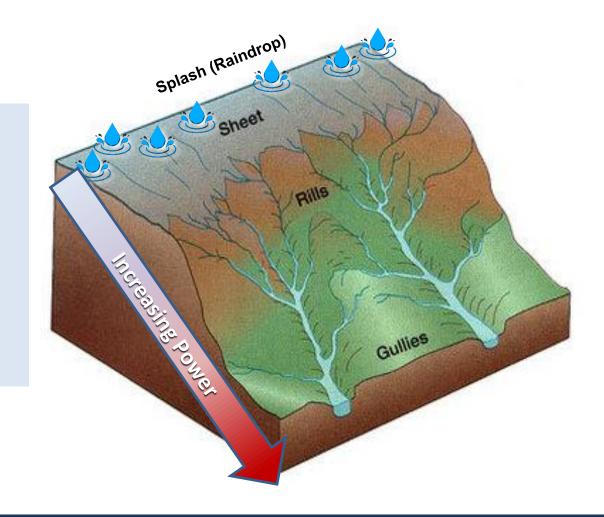
5 Million Acres of Wetlands

157,500 acres of Coastal Wetlands

3478 miles of Coastline

Maine has over 30,000 miles of roads

It all adds up!


The Power of Water

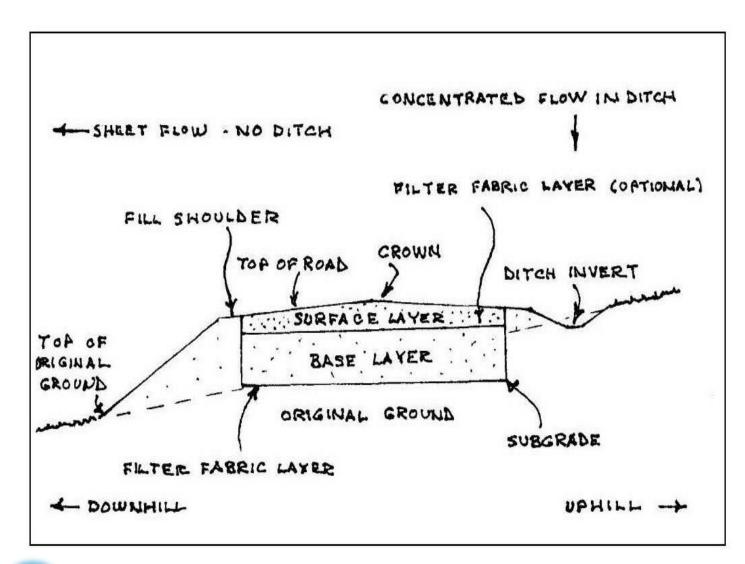
Water needs power to be able to erode the soil

(Power = Velocity x Depth)

Increase Water Depth → Increase Power Increase Water Velocity → Increase Power

Increase Power → Increase Erosion

A Good Gravel Road?


- 1. Rideability, access, safety
- 2. Protects Water quality

A good road is <u>designed</u> to support travelling vehicles and provide stable drainage from power of water

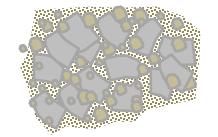
What Makes a Good Gravel Road?

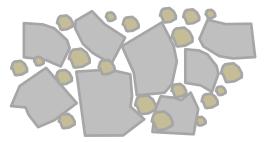
Crown/Superelevation: 4%, ½ in per foot

Surface layer: 4-6 inches when compacted; 12 inches over geotextile

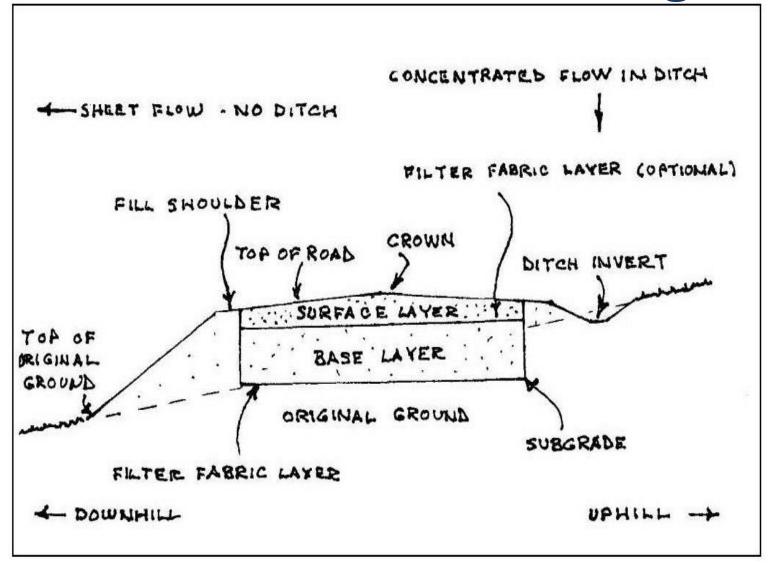
- Hard pack gravel
- Blue stone gravel (limited availability)
- Reclaimed asphalt

Base layer: 12-18 inches thick


Open, draining gravel with larger aggregate


Gravel

Base



Recommended Specifications for
Well-Graded Gravel Material for
Roads

Road Base Material		Road Surface Material	
All material less than 6" in size		All material less than 2" in size	
% by Weight	ls Smaller Than	% by Weight	Is Smaller Than
78-100	1 ½"	85-100	3/4"
55-75	3/4"	70-100	1/2"
30-55	1/4"	55-85	1/4"
8-22	#40 (sand)	20-35	#40 (sand)
0-7	#200 (silt)	7-12	#200 (silt)

Basic Gravel Road Design

Road Surface Problems: Tire Rutting/ Soft road

- Poor road base material does not drain efficiently
- Road is too low and the base is in the water table
- Poorly drained native soils that may be unsuitable
- Insufficient road base thickness
- Insufficient ditching/drainage

- Reconstruct with proper road base
- Build up road elevation
- Woven geotextiles under surface material
- Improve ditching
- Remove edge dams

Road Surface Problems: Muddy/Slippery Surface

- Poor road surface material containing too many fines + drainage issue
- Insufficient crown or superelevation

- Install new surface material or blended with existing surface
- Re-slope/crown road through grading

Road Surface Problems: **Dust**

Sign of poor road surface material with too many fines

- Apply new road surface material with the proper soil gradations
- Use of calcium chloride or other polymers as dust suppression

Drainage Problems:

Potholes

- Sign of poor road drainage
- Caused by continual suspension and splashing out of fines

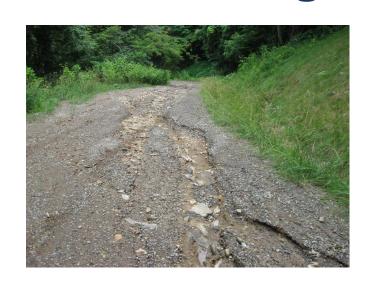
- Remove debris from pothole and "cut out" pothole by removing portion of surface
- Fill pothole with appropriate surface gravel and compact
- Regrade road surface to establish/maintain proper crown

Road Surface Problems: Loose Gravel

Poor surface material that lacks fines due to dusting, winter sand or erosion

How to Fix it:

 New road surface material is needed


Road Surface Problems: Washboarding

 Sign of poor material (too few fines) and fast vehicle speeds

- Check gradation of road material and adjust as necessary.
- A grader should be used to remove washboarding and mix road materials
- Alternative road surface materials may be necessary in certain high stress areas

Road Surface Problems: Longitudinal erosion of road surface

- Flat or u-shaped road
- Edge dams
- Water is traveling in a wheel rut
- Road ditch is not large enough
- Snow banks may be preventing drainage in early spring

- Add crown or superelevation
- Edge needs to be graded
- Road needs to be regraded
- Turnouts or larger ditches
- Plow wider area of roadway

Drainage Problems: Ditch erosion

- Slope of ditch is too steep to handle flow without additional protective measures (vegetation, riprap, turnouts)
- Ditch is too small to handle the volume of water
- Bottom of ditch is too narrow (V-shaped) and needs to be widened
- Ditch may just need some maintenance to remove debris or accumulated road sand

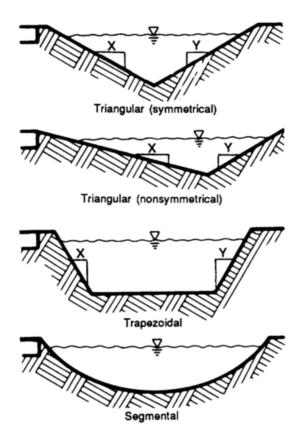
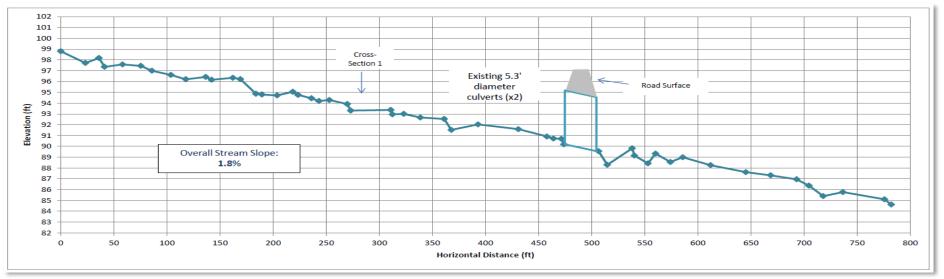



Figure 6-23. Ditch cross sections

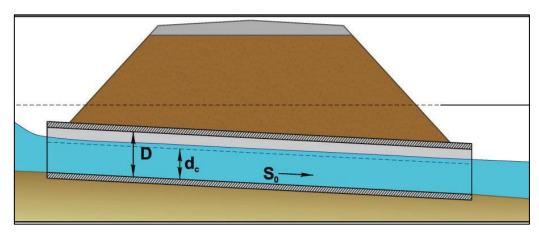
Drainage Problems: Ponding on uphill side of road

- Culvert set too high
- Culvert too small for drainage area
- Improper culvert slope
- Culvert has heaved or ends have turned up
- Road has created groundwater/surface water dam

Drainage Problems: Water overflows road at culvert

- Culvert is too small for drainage area
- Culvert is plugged with sediment or debris
- Culvert has been crushed and needs replacement

- Size culverts in relation to the drainage area. Minimum recommended culvert diameter is 18 inches.
- Add rock sandwiches for groundwater & wetland crossings
- Add cross culverts or turnouts
- Regular inspection & cleaning of ditches and culverts
- Add gravel to build up profile



Drainage Problems: Culvert fills with sand/debris

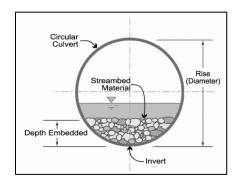
- Culvert placed with too little or no pitch
- Culvert outlet structure clogged and in need of cleaning.
- Culvert inlet basin full or not deep enough.
 There is upstream erosion that needs to be fixed.
- Culverts too far apart in areas of steep slopes

Drainage Problems: Crushed or lifting culvert

Culverts should be covered with at least one foot of fill. Compact soil in "lifts" or layers of 6 inches.

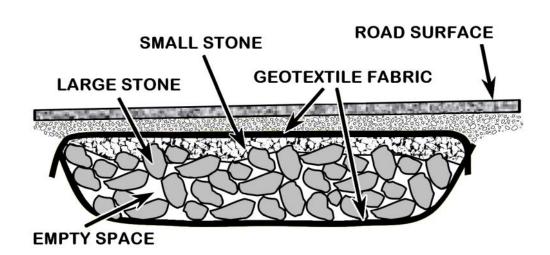
- Improper installation (lack of compaction, too little cover)
- Culvert has been weakened by rust and needs replacement. Culvert was not designed to handle loads from heavy trucks and equipment.

Drainage Problems: Culvert end erosion


- Insufficient armoring of culvert ends
- Culvert is too short and doesn't allow for proper protection of the side slopes
- Water is seeping alongside the culvert. Install inlet anti-seep collar

Water Quality & Habitat: Stream Crossings

- Culvert installed at wrong pitch
- Culvert not embedded deep enough
- Fish passage issues
- Ditch directly outfalls into stream
- Problems with multiple pipes
- Compliance with DEP exemption & ACOE


Stream Smart: 4 S's

- Span the stream
- Set the elevation right
- Slope matches stream
- Substrate in the crossing

Water Quality & Habitat: Wetland Crossings

- Effective for the crossing of wetlands or in road cuts where the groundwater is intercepted
- Re-connects natural hydrology strengthens road and prevents groundwater from wicking into the road fill
- Culverts at least every 50 feet

Do You Need a Permit?

DEP-Related Permits for Certain Camp Road Work Near Water					
	In or within 75 feet	Within 250 feet	Contact		
Lake, Pond, River, Wetland, Tidal area	Required permits: NRPA Shoreland zoning	Required permits: • Shoreland zoning	NRPA - DEP Shoreland zoning - Town Code Enforcement Officer **		
Stream	Required permits: NRPA* Shoreland zoning				

^{*}Replacement of stream crossings, maintenance & repair are exempt from permitting, but conditions apply

^{**} A DEP-certified contractor may be required

Contact:

John Maclaine

John.maclaine@maine.gov

(207)615-3279

www.maine.gov/dep

